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ABSTRACT

An investigation was conducted to determine in situ the effects of ultraviolet
radiation and solar wind protons on materials considered for use on the 1973 Venus-
Mercury flyby vehicle. The experimental program involved more than 2400 hours
of continuous radiation-facility testing, preceded, interrupted, and followed by
ir situ thermophysical property measurements on transmissive solar cell filters,
opaque solar cell-filter stacks, adhesives, 7940 fused silica, and Kapton film. Sun
rate, solar wind rate, and sample temperature were all increased with time during
the 2400 hours, providing an accurate simulation of radiation conditions along the
planned flyby trajectory. final exposure levels of 12, 000 ESH and 108 protons/cm?
were reached. Solar absorptance increased and solar transmittance decreased in most
solar cell filters. The solar absorptance of solar cell-filter stacks also increased.
Changes measured in solar cell filters were generally less than changes measured on
solar cell-filter stacks. Both ultraviolet and proton exposure reduced the effective-
ness of the ultraviolet rejection coatings in the solar cell filters. In some materials,
simultaneous exposure to protons and ultraviolet radiation yielded synergistic damage
greater than the sum of proton degradation and ultravioiet degradation in separate

sampies. Thermal damage in unbonded Kapton film was catastrophically large.
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INTRODUCTION

A flyby of the planets Venus and Mercury cur 1 the 1973-1974 time period
is planned as part of the National Aeronautics and %,-.ce Administration's ccntinuing
unmanned planetary exploration program.  Successful completion of a space flight
to within 0. 4 astronomical unit (the approximate radius ot Mercury's orbii about
the sun) raises new requirements for temperature control of the flyby vehicle. At L
0.4 AU the solar intensity is some six times that ot Earth {1 AU). Temperature
control of a flyby vehicle's solar array is particularly critical, for whersas the more -
intense solar radiation closer to the sun can provide increased conversion energy for
electrical power generation, definite temperature control is required to limit any
drop in conversion efficiency and, indeed, to forestall system foilure from the high
temperatures anticipated. Such solar array materials as state-of-rhe-art solders used
heretofore would be expected to melt, raising the likelihood of loss of electrical

continuity while the flight is in progress.

Typical temperature regimes expected during a Venus-Mercury flyby have
been discussed elsewhere (Reference 1 is an example) and several feasible methods .
of reducing temperature extremes have been proposed. Variable-geometry solar
parels have been designed, for example, so that their effective projezted area
ex.sed to the sun can be reduced at will as solar intensity rises. Various ratios of
active cell areas to inactive reflector areas on a solar panel have been studied with
the idea of rejecting as much incident solar energy as possible with o "mirror mosaic" .
Another solar panel design concept for spacecraft bound in. ird toward the sun

involves transmitting only certain wavelengths of the sun's energy to solar cells —

wavelengths the cells can utilize most efficiently for conversion to electrical power

r
— and rejection (reflection) of as much as possible of the untransmitted e rergy. + ML
In any investigation of such spectrally selective "bandpass" filters for solar cells,

an emphasis is placed on trading off filter thermophysical properties (such o olar

DRGNS A

absorptance, solar fransmittance, und thermal emittance) for energy conversion : {
properties. State-of-the-art solar cells (such as 18-mil-thick n/p 2 ohm~cm cells

used in recent NASA space flights) accomplish energy conversion with light .between

R W T T PE e ik



0.4 and 1.2 micron wavelength, and utilize 0.6 to 1. 0 micron wavelength radiation
most efiiciently. Therefore, on the missions where incident radiation is abundant,

the objective in employing bandpass filters is to transmit and allow a solar cell to
utilize photon energy within the wavelength region stated above, while simultaneously
retlecting unwanted radiation outside that wavelength region. This calls for filter

design of infrared rejection capability as well as ultraviolet rejection.

Rejection of ultraviolet radiation has become a standard feature for solar
cell filters, since ultraviolet radiation often is o cause of component ¢ gredation
in space. Ultraviolet rejection is normally accomplished by an appropriate coating
on a sular cell “cover glass". The glass (or quartz) stops damaging low energy
space particulate radiation while transmitting radiation useful for energy conversion;
the cover glass also provides a substrate for a first surface anti-reflection coating to
maximize such useful radiation. Previous surveys and experiments (such as References
2 and 3) have uncovered degradation in both coatings and substrates. The entire
spectrum of radiation effects must thus be examined: surface effects in the first and
second surface coatings; bulk effects in the substrate and bonding agent between
filter and cell. This program has spanned a broad investigation to increase under=-
standing of anticipat ed effects during the upcoming Vernus-Mercury mission.
Radiation sources of concern included solar ultraviolet radiation and solar wi nd
protors. Solar wind protons have an exceedingly short range in most materials, so
that their displacement and ionization damage is anticipated only in first surface
coatings, or in the first thousand or so Angstroms of an uncoated substrate or other
material. Outside the scope of the program were alpha particles, "heavy" ions
from the sun, neutralizing "thermal" electrons in the solar wind, and high energy
solar and a galactic cosmic ray particles. It is widely felt that this listing of
included and excluded interplanetary radiation sources is roughly in the order of
decreosing importance, taking into account relative abundances, domage mechan-

isms, ond relative effectiveness for damage.

Thermophysical properties inwestigated within the scope of this program have

included spectral and total absorption, trarsmission, and reflection properties of
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several candidate spacacraft materials including solar cell filters (discussed in detail
hereinafter), and, of course, the effects of solar proton and ultraviolet radiation on
these properties. Beyond the scope of the program and left to be determined in the
future are the effects of solar ultraviolet and particle radiation on the thermal

emittance of spacecraft materials and components.
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EXPERIMENTAL PROGRAM

An experimental program to investigate the effects of space radiation on
components and materials aboard the 1973 Venus-Mercury spacecraft was initiated
at the Jet Propulsion Laboratory (JPL) in 1969. This document constitutes the final
report to JPL of work done within that program framework at the Boeing Radiation
Effects Laboratory (BREL) during 1970. The Boeing Company was asked to do
experimental work including a 2400-hour simulation of the Venus-Mercury mission.
This interplanetary flight calls for a transit of a space vehicle to the neighborhood
of Venus over a real-time period of approximately 2900 hours. Gravitational
attraction during the Venus flyby will alter the spacecraft trajectory so that Mercury
is approached some 1400 hours later. The mission concludes with a post-Mercury-

encounter phase on the order of 500 hours long.

The 2400-hour experimental investigation corstitutes a minimal test ac-
celeration factor of 2 over the real-time mission. Figure 1 shows the basic test
sxposure plan insofar as simulated ultraviolet radiation and solar wind intensity are
concerned. A five-fold increase from 2 to 10 suns and solar wind intersities

(relative to Earth orbit at 1 AU) assumes Mercury encounter at aphelion (0.43 AU).

Acc urate simulation of temperature excursions expested in various materials
tested was also included in the experimental plan. The importance of providing for
this is discussed later in this document. Figure 2 represents the temperature of test
sample substrates as a function of time (test hours) during the simulated mission.
The predicted temperature profile with time, as calculated assuming certain
cbsorption and emission properties of solar panel components, without radiation
degradation being considered, is compared in Figure 2 with the actual temperrture '

"schedule" employed during the 2400-hour radiation exposure test.

Test Materials

Emphasis during this experimental program has been ploced on 3 "bandpass" ;
solar cell filters that are candidates for the 1973 Venus-Mercury space flight.

These filters have been evaluated aione and in combination with n/p 2 ochm-cm cells.
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Figure 1. Increase in Ultraviolet Sun and Solar Wind Rates
During Simulated Venw-Mercury Mission
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Other materials investigated include uncoated 20-mil Corning 7940 fused silica
substrates employed for the filter coatings, adhesives between 7940 quartz and
aluminum reflectors, and Kcpton polyimide film being evaluated for possible use as
a thermal shield over much of the Venus-Mercury spacecraft. All these types of

materials are listed in Table 1.

Table 1 also delineates the type of exposure (ulfraviolet-only, proton-only,
or simultaneous proton/ultraviolet radiation exposure) receivad by each sample
coded with a JPL-assigned number. The table identifies the numbers assigned to
samples evaluated during the 2430-hour exposure, and during a preliminary 500-
hour exposure discussed later under "Temperature Effects. " Sample sizes of 2 cm
by 2 cm (the size chosen for space flight use), in combination with the total
number of samples and material types to be exposed, placed a severe constraint on
available beam size. Program schedule did not provide for development of tech~
nical ways to alleviate this constraint (such as multiple runs, beam expansion, or
defocusing beyond that already available), but reduction of filters in the 2400-
hour test to a 1 cm by 1 cm size did provide some relief as to total sample array

size.

Significant pre-irradiation sample-to-sampie differences were noted,
especially in the infrared-wavelength-region reflectance characteristics of several
types of materials. The silicone adhesives investigated exhibited appreciable
sample-to~sample variations :n infrured absorption bands centered at 1.7 and 2, 2
micrors. Likewise, cell/filter combinations as received hod different pre-
irradiation reflectance values at wavelergths Iunger than about ore micron. Smaller
reflectance value variations were measured at shorter wavelengths (visible and
ultraviolet regions) in the various cells, filters, and adhesives tested. These
measured sample-to-sample differe:ices are shown in spectral plots included later in

the " Experimental Results" section,
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Table 1. Solar Panel and Other Materials Investigated and Type

and Amount of Radiation Exposure Received.

Sample Number and Exposure Received
Type of Test Sample 2400 hr Test 500-hr Test
uv p+ |[UV/p+ | UV p+ UV/p+

Blue filter on 2 2-cm cell 2074 | 2092 2083 2035 | 2047 2041
Modified 4026 filter on cell 2075 | 2093 2084 2036 | 2048 2042
Blue-Red filter on cell 2076 | 2094 2085 2040 | 2052 2046
Blue filter alone 2077 | 2095 2086 2038 | 2050 2044
Modified 4026 filter alone 2078 | 2096 2087 2039 | 2051 2045
Blue-Red filter alone 2079 | 2097 2088 —_ —_ —
Clear glass (7940 fused silica) | 2080 | 2098 2089 —_ —_ _
Clear glass/RTV-602 2081 | 2099 | 2090 | — | — —
adhesive/polished aluminum
Clear glass/XR6~3489 2082 | 2100 | 2091 - | - —
adhesive/polished aluminum
Blue-Red filter/adhesive/ - -_ — 2037 | 2049 2043
polished aluminum substrate
3-mil Kapton polyimide film —_ one one -— - -

wample | sample

Initial transmission properties were fourd to exhibit less variation from sample

to sample, with the exception of the type 4026 bandpass filter, in which cuton and

cutoff wavelengths changed slightly (up to 10 my) from sample to sample. This

caused only slight variances in measured thermophysical properties (solar-weighted

values), but created significant yet solvable problems in computer-processing of

separate spectral reflectance and spectral transmittance data to determine spectra!

absorptance properties of the 4026 fiiter (see Data Acquisition and Processing

section below).
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Table 2 and Figure 3 give additional details about characteristics of the
filter samples investigated during this program. Table Z lists reflection and trans-
mission characteristics for the 3 filters (blue, blue-red, and 4026) that were
evaluated both alone and in stack combinations with solar celis. Included are
cuton and cutoff wavelengths of each filter alone, and an indication of the spectral
selectiveness achieved by the multilayer interference designs. Figure 3 shows
"exploded" views of each of the 3 filters tested in two configurations — alone
(both reflectance and transmittance properties measured) and cemented to cells
(reflectar.ce/absorptance properties determined). A comparison of filter-only and
filter/cell reflectance curves in Appendix A shows that certain wavelength shifts
oceur as a result of cementing filters to solar cells. Two of the largest shifts are
(a) the "red peak" in blue-red filters, which is shifted approximately 20 milli-
microns toward longer wavelengths, and (b) the 4026 filter cuton wavelength near

0. 6 micren, which shifts approximately 10 millimicrons toward longer wavelengths.

Exposure Apparatus

Further development of the existing and proven Boeing combined radiation
effects test chamber (CRETC) has taken place in support of this solar cell/filter
effects program, The principal capability expansion has been the installation of
an in sity transmission measurement system, together with an optical adjustment

mechanism making possible the measurement of various sample sizes in both

reflectance and transmittance modes.

Principal features of the CRETC facility have been described in earlier
reports (References 4-6) for similar rodiation effects investigatiors. Description of
those portions of the facility applicable to this program is repeated here. Figure 4
is an overall view of the CRETC and its associated low energy particle accelerator

(LEPA). The LEPA is capable of delivering positive ions extracted from its RF-




2a.

2b.

2c.

Table 2.  Spectral Transmission Characteristics of Three Solar

Cell Filters Investigated

Blue Filter Characteristics:

1.

Antireflection coating. To produce reflection of less than 2%
in the region 600 to 800 millimicrons.

Cuton. 410 mp at 50% transmission = 15 my.

Ultraviolet rejection. Less than 1%,

Transmission characteristics. The mini..um transmittarce measured at
normal incidence in air is as follows:

500 myu to 600 mp - 85 %

600 mu to 1100 mp - 90 %

600 mu to 800 mu - Not less than 94 % average
450 mp to 1100 mp - Not less than 94% average

4026 (Modified design) Filter Characteristics:

1.

2
3
4.
5

7.

Antireflection coating - None

Cuton. 650 mu at 50% transmission * 20 mp.

Ultraviolet rejection. Less than 1%,

Cutoff. 1000 mpu at 50 Z transmission + 40 mp.

Transmission characteristics. The minimum transmittance measured at
normal incidence in air is as follows:

700 mp to 950 mp - Not less than 75 % average.
Infrared cuton. 1900 mp at 50% transmission + 40 my.

Infrared rejection. 1050 mp to 1800 mu - Not less than 95% average.

Blue-Red Filter Characteristics:

1.

Antireflection coating. To produce reflection of less than 2% in the
region 600 to 800 millimicrons.

Cuton. 400 mpu ot 502 transmission £ 15 mp.

Ultraviolet rejection. Less than 1%,

Cutoff. 1130 mp at 50% transmission 40 mp.
Transmission characteristics. The minimum trarsmittance measured at
normal incidence in air is as follows:
600 mp - 800 mpy - Not less than 927 averoge
Infrared rejection. 1165 myu to 1450 my - Not less than 95% .
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Figure 3. Exploded View of Three Filters Investigated and the Two Configuratiors Tested
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Figure 4. Experimental Facility for Combined Radiation Effects Studies and Evaluation in Situ

excited plasma to the CRETC, with particle energies selectable within the rarge

0.5 to 100 keV (kilo electron volts). For this program, 3-keV protons were extracted
from the LEPA source and separated from other hydrogen spacies by a bending and
mass-analyzing magnet between the LEPA and CRETC. The proton beam, with
further defocusing inside the CRETC, was delivered on the sample plane at antici-

pated solar wind rates (108 -10° profons/cm2-second).

Figure 5 is a view of the opposite end of the CRETC facilitv. With the
chamber door open, sample positions and interior equipment are apparent, The
sample and dosimetry arrays are positioned in Figure 5 so that, were the chamber
door closed, the sample holder would be adjacent to the integrating sphere, and
the particle dosimetry tabs would be in the exposure position. More precisely, the
lower group of dosimetry tabs seen within a dashed rectangle at the extreme left

of Figure 5 would be adjacent to the rectanguiar proton channel and UV boffle.
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Figure 5. CRETC Ultraviolet Sources, Integrating Sphere, Sample Holder,
and Dther Interior Equipment

ll Dosimetry Tabs in Exposure Position Whe

This baffle is positioned so that none of the lamp radiation (whether ultraviolet or
longer wavelengths) can directly reach sample positions inside this rectangularly
shaped area. The charged particle beam (profons in this progrem), however, is on
a line of sight from the LEPA beaam port through the defocusing Einze! lens to
samples placed within the rectangular area. Thus, samples placed there are de~
noted the "proton only" array, but it should be kept in mind that energy from the
ultraviolet source lamp(s) is sc >ttered and reflected throughout the chamber, and
a small amount ~an enter the proton channel. The intensity involved is a minute
fraction of one sun, and due to the poor reflectance of stainless steel in the ultra-
violet, the wavelengths involvea are almost entirely in the visible and near-

infrared wavelength regions.

Samples placed just zbov : the proton channel, anywhere throughout an area
the size and shape of the proton cnannel cross~section, receive both proton exposure
and ultraviolet radiation exposure. On the dosimetry tab array at the left of Figure
5, this proton plus UV region extends above the dashed-line rectangle to the single
dashed line which is near the uppermost proton tab. Thus, the entire array of some
two dozen dosimetry tabs serves to map the uni”ormity of the proton beam at any

given time. Absolute proton intensity is me~-ured with a Faraday cup behind an

13
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aperture in the center of the dosimetry tab array. The uniformity and abeolute
measurements are correlated when the entire sample holder and dosimetry arm is
:noved, which rotates the teb just above or just below the aperture into the space
usually occupied by the aperture. For the relatively large arrays of samples ex-
posed to protons (and protons plus ultraviclet radiation) during this program, spatial
uniformity has been maintained within plus or minus 20 percent. The LEPA has a
deliverable proton flux range much in excess of the 2-solar wind to 10-solar wind
variation with time called for in Figure 1, so that appropriate selection of LEPA

controls provides the various proton inter.ities indicated.

The ultraviolet radiation for the simulated Venus-Mercury mission exposure
is emitted by arc discharges in either or both of two long-arc xenon lamp sources
seen at the right in Figure 5. Selection of one lamp or both, coupled with the
large wattage range over which each lamp maintains its arc discharge, has pro-
vided a sun rate selection range large enough to encompass the 2-sun to 10-sun
variation with time called for in Figure 1. Sun rates have been determined from
radiome /er output levels taken with ard without a UV-absorbing filter over the
radiometer detector. Uniformity of ultraviolet radiation intensity over the sample
array is determined by "mapping" with the radiometer held in a precision jig. For
the relatively large arrays of samples exposed to ultraviolet radiation during this

program, spatial uniformity has been maintained within plus or minus 10 percent.

The temperature control system used during this program is diagrammed in

Figure 6. The system was used in a mode wherein incoming nitrogen gas was always
heated or used at its ambient temperature. This resulted in the temperature range
+10°C to +140°C previously depic.ed in Figure 2. (A different configuration would
be used to cool gas or even supply liquid nitrogen to simulate conditiors during
space ﬂ’ighr to the outer planets.) During much of the testing period the controlled
temperature was virtually without fluctuation, and within one degree Celsius of the
desired value. On occasion, such as during UV lamp wattage changes or at times
of changing temperature "set point”, excursions up to +5°C occurred while the
proportional controller adjusted to the new value. The sample holder in the CRETC

constitutes a relatively lo:ge thermal mass. Consequently temperature changes

14
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occur af relatively low rates. (An additional example is that approximately one
hour is needed to elevate sample holder and samples from room temperature to
+140°C.) In evaluating results of the 2400-hour and preliminary 500-hour exposure
tests, it should be remembered that, including measurement periods, samples were
"at temperature" somewhat longer than the indicated hour periods. For the 2400-
hour test, the time was approximately 2600 hours, spread fairly evenly over the
test period and concentrated during measurement periods. During the preliminary
500-hour test equipment problems were encountered and consequently the samples
were at +140°C for a total time of approximately 900 hours, including measurement

periods.

Vacuum levels of 1 x 10-7 torr and better were achieved during exposure
periods, using combinations of ion, cryogenic, and turbomolecular pumping. During

times of sample measurement, vacuum levels of 3 x 10~8 torr were typically reached.

Sample Measurement Apparatus

Apparatus used to evaluate in situ spectral reflectance, transmittance, and
absorptance properties of solar cell filters, adhesives, and Kapton film during this
program is shown in Figure 7. The equipment external to the CRETC vacuum chamber
includes a double-beam, ratio-recording far UV spectrophotometer, a data encoder
and readout system, and a card punch. This sample measurement system enables
spectral data to be recorded in the normal way as raw data on spectrophotometer
charts, and simultaneously to be punched on cards for subsequent computer

processing.

The in situ portion of the measurement system can be described in the fol-
lowing way. An integrating sphere reflectometer i. situated in vacuo such that a
trarslational movement of the sphere (Figure 5), coupled with a rotational movement
of the sample holder on its "arm" (Figures & and 8) will bring any desired sample
into position for measurement at the sphere's sample port. In Figure 8b the sample
and dosimetry arrays are rotationally in fransit from measurement and exposure
positions (respectively) to their exposure and measurement positions (respectively).

The 3mera angle in Figure 8b exposes to view the fixed Faraday cup described

16
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Figure 7. Reflectance Measurement and Data Collection Systems

earlier, and the insitu sample transmission measurement source. Filter samples are
mounted at a common radial distance from the sample arm pivot point, so that with
one translational setting of the integrating sphere port, all filters can be measured
by bringing each in turn in front of the sphere sample port with a rotatioral move-
ment of the sample arm. The larger solor cell samples and adhesive samples are
similarly mounted along common radii, most clearly shown in Figure 8c. Figure 8¢
also shows the grouping of samples into horizontal rows for proton-only exposure,

ultraviolet-only exposure, and simultaneous proton/ultraviolet exposure.
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Figure & represents a top-view, line diagram of the in situ sample measure-
ment system. The double~beam configuration for reflectance measurements has
been proven un numercus programs over the past 4 years. It provides reflectance
data with high precision ond repeatability (£ 1/2 percent or better) which is only
possible by using a double-beam-type reference. The reference is the magnesium
oxide/Z~-93 coating on the integrating sphere wall. In making a measurement, a
reference curve is produced by (1) pivoting the sample beam mirtor awuy from the
sumple pori (using a solenoid in vacuo) so that the sample beam also strikes the
MgC wall (dashed line inside the integrating sphere in Figure 9a), and (2) scaling
the chart to the proper value with the spectrophotometer 100 percent potentiometer.
Then sampie reflectance is measured by returning the sample beam to the sample
port. Being a continuous-scan instrument, the Beckran DK-2A spectrophotometer
includes (when operating double-beam) an internal program fo.'odiusf slit width

as scurce energy and detector sensitivity change with wavelength,

Because of limited time during this progrom. addition of transmission
measurement capability to the CRETC facility has been restricted to an interim
configuration utilizing a lamp source in vacuo, optically coupled to the sample
beam path discussed above, and terminating with the appropriate detectors mounted
beyond the monochromator (Figure 9t). Thus, for determining transmission proper-
ties during this program, single-beam directional measurements have been made, the
sample beam passing through the integrating sphere, but not impinging on its walls.
In the single=beam (energy) mode, the DK-2A provides for manual selection of slit

width, source energy, and detector/amplifier gain. Then pen resporse beiween

zero and 100 percent is a function of all these three parameters times percent
trarsmittance, Normalization to display percent transmittance alone simply requires
a different form of reference curve than the one generated for reflectonce measure-
ments. This is done with a reference port adjacent to (i.e., in the same row as)

the filter samples (a total of 13 ports in Figure 8c). The optical equivalence of the
13 ports was determined before mounting samples; among all 13 ports there is less
than one-tenth of one percent variation in effective trarsmittance. Thus only one

port not covered with a sample validly serves as a reference for all 12 filter samples.
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Precisicn or repeatability of measurement is another matter. As with all
single~beam measurement configurations, the passage of time between ictererice
curve scan and sample curve scan, whether seconds or minutes, can and does
introduce subtle percent variations in displayed transmittance percentages due to
source strength changes and other variables along the optical//electronic train,

Spectral variations of 2 percent are within experimental error.

At the beginning of the program there were two concerns about directional
transmittance measurements; ti.ese were quickly resolved. One involves the fact
ihat the transmission measurement source (in situ tungsten-iodine lamp) is mounted
"behind" the filters, opposite the side on which proions and ultraviolet radiation
are incident. Separate bench measurements using a Beckman DK-2A and Gier-
Dunkle integrating sphere yield identical hemispherical transmittance curves, no
matter which side of a filter sarple faces the measurement source. These same
transmittance curves also resolve the second concern, whether directional and
hemispherical transmittance measurements are equivalent., The blue and blue-red
filter designs result in virtually no scattering, and further examination ofter irradia-
tion reveals no inducement of scattering or diffuse appearances; transmission remains
directional. The many dielectric layers of the 4026 filter design coffer increased
possibilities for scattering and inducement of diffuse qualities during irradiation, yet
examination of the 4026 filters ofter testing likewise shows no changes. Cuton/
cutoff wavelengths do shift somewhat as an unirradiated 4026 fiiter is viewed from
different angles (both by eye and by turning a sample with respect to its measurc
ment beam). The 20-degree angle already in use for reflzctance measurements has
also been used for trarsmittance measurements during this program. In summary, it
is felt that if any directional effects or differences exist in any filter types investi-

gated, they are acceptably small.
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Data Acquisition and Processing

The experimental appcratus necessary to align and measure both opaque and
non-opaque samples has been described and discussed above. This section discusses

the measurement and data processing procedures used during this pregram.

Reflectance measurements have been made on each sample, whether opaque
(cell ffilter stacks, adhesive/quartz, Kapton film) or non-opaque (filters and un-
coated quartz), with high resolution of spectral data in mind. A separate Beckman
chart and set of punched cards is made for ecch of three wavelength regions —
0.28 t0 0.36, 0.36t0 0.71, and 0.71 to 2.5 microns — at scan speeds sufficiently
slow to resolve all important spectral structure. Sample curves thus made are
divided, wavelength by wavelength, by the values on reference curves (discussed
in the previous sectior) so that the normalized result is invariont to the DK-2A 100
percerit potentiometer setting. At the beginning of the program, a comparison of
these normalized CRETC reflectance curves was made with comparable reflectance
curves (of the same types of samples) generated using a bench DK-2A and sample-
at-the-center integrating sphere. The latter integrating sphere is more widely
regarded as approximating absolute reflectance more accurately, if imperfections
in sphere wall uniformity and diffusivity are ignored. A spectrally dependent
function expressing decimally the ratio of curves obtained with the two sphere
configurations was thus determined, and incorporated into the existing data
processing program. This program, working with reflectance data on all samples,
has been used to compute solar reflectance of each sample and solar absorptance of
opaque samples, and to control spectral plotting of processed data. Thermophysical
property values ubtained during this program cppear to be in very good agreement

with values obtained elsewhere previously, and have updated some earlier data.

During the course of the program this data processing program has also been
modified and extended to treat sample transmittance data. The single-beam,
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continuous=scan transmittance measurement procedure, including as it does the
manual selection of gain, slit width, and wavelength scan speed, requires further
breakdown of spectral regions scanned at a time. Seven regions — two in the
ultraviolet, three in the visible, and two in the infrared — have been employed,
with wavelength scanning at reduced speeds for greater accuracy. Division of
sample scan values by reference scan values, wavelength by wave.ength, directly
yields absolute spectral transmittance. Minor problems arise when manual slit
settings different from automatic slit program settings are used (the former for trans-
mittance measurements, the latter for refiectance measurements), especially on
filters with steep spectral dependences. The 4026 filter in this program is probably
a "worst case”. A curve made with relatively wide monochromator slit settings has
less spectral resolution and steepness than a curve mode with relatively narrow slits.
A displayed reflectance plot is not identically like an inverted transmittance plot.
unless additional data treatment is undertaken to compensate for the slit width
differences just mentioned. This is, in short, the procedure that has been established
during the course of this program: by reiterative trials o deiermine spectral eqriva-
lence factors to compensate for different color bandpasses in separate reflectance
and transmittance measurements. This is especially necessary in order to add
computer-processed reflectance values and computer-processed transmittance values
of filter sumples, obtaining the spectral absorptence (and solar absorptance) from

unity minus the computer-added sum of R and T.

The majority of the remainder of this report consists of formal reporting of
. pectral reflectance, transmittance, and absorptance data obiained on eleven types
of solar panel and ather spacecraft materials and components. The most significant
results are summarized in the next section, "Experimental Results." Detailed

spectral plots are gathered in the appendices,

- .

e it a—— v

et = e 5 —




EXPERIMENTAL RESULTS

As stated before, the principal experimental effort during this program has
been conducting a 2400-hour in situ simulation of the 1973 Venus-Mercury fiyby
mission. Degradation of reflectance and transmittance properties due to radiation
exposure occurs in both transmitting and non-transmitting materials. Both protons
and ultraviolet radiation contribute to the measured degradation, with relative
contributions varying from material to material. There are synergistic effects .on-
tributing to combined radiation damage greater than separate proton and UV damage

amounts in several materials, and less than additive degradation in others.
Solar Cell Filters

Results foi the most widely used solar cell and filter combination (biue
filter) are summarized in Figure 10. The effect of ultraviolet radiction, and to a
lesser extent protons, is to reduce the effectiveness of the UV rejection filter
coating, and to reduce the effective transmittance of the blue filter at wavelengths
important for conversion by the solar cell into electrical energy. In the near
infrared wavelength region, initial somple-to-sample differences before exposure

are as important a zonsideration as any changes induced by radiation exposure.
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Figure 10. In Situ Effects of Protons and Ultraviolet Radiation on Blue Filter/2 chm-cm Cell Stack
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Degradation of the UV rejection filter by simultaneou. exposure to protons nnd ultra-
violet radiation is less than the sum of individual proton and uitraviolet dainage
amounts. On the other hand, combined proton/UV damage at wavelengths betweer.
0.4 and 1. 0 microns is approximately additive. Complete spectral data including
mid-exposure results is g’van in Appendix A in Figures 24, 25, and 26.

Figure 10 indicates amounts by which protons, ultraviolet, and simultaneous
exposure to protons and ultraviolet degrade solar cell properties as indicated by
spectral reflectance measurements. Measurement of the transmittunce of the blue
filter alone, before and after the 3 types of exposure, give results summarized in
Figure 11. It should be noted from Figure 11 that loss in energy reaching the solar
cell from reduced transmittance occurs cver a narrower wavelenyth region (0.4 fo
0. 8'microns) than loss in energy due to increased filter surface reflectance (Figure
10, 0.4 to 1.0 microns). Data is displayed in Figure 11 and in later transmittance
plots in this report, exactly as computer processed. Smoothing and other widaly
practiced audio~visual efforts have not been employed. Thus, as indicated earlier,
small variations, perhaps 2 percent due to single-beam precision limits, may be
observed in these computer-plotted transmittance curves at one wavelength or
another. In Figure 11 an excmple is at 0. 72 microns, where transmittance changes
are indicated to be much smaller than at wavelengths slightly longer and shorter
than 0.72 microns. Such spectrally narrow variatiors should be discounted in anv
further analysis of transmittance data, since real transmittance changes are those
that are apparent in this document's transmittance plots at mere than one wavelength
point. Wavelergth points that are connected by computer-controlled plotting occur
every 0. 02 microns in the infrared, every 0.005 micrors *n the visible, and every

0. 002 microns in the ultraviolet.

Complete spectrol transmittance data for the blue filter, including mid-

exposure results, is given in Figures 30, 3', and 32 of Appendix A.

Cigure 12 summarizes reflectance degradation measured in 4026 filters over
2 ohm-cm solar cells. The dielectric interferance coatings on the 4026 fiiter
broaden the UV rejection feature to reject wavelengths as long as approximaraly

0. 6 micron before exposure. The relative contributions of ultravioiet rodiation
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and protons, and the greater-than-additive combined proton/UV damage, cre
evident at the shorter wavelengths in Figure 12. Cuton and cutoff wavelengths
(0.6, 1.0, and 1. 8 microns) shift toward shorter wavelength values during exposure.
In Figure 12 this wavelength shift is labelled near 2.2 microns, where local re-
flectance peaks shift noticeably toward shorter wavelenths. At 0.9 and 0.8 microns
the tendency is for peak-and-valley structure to be attenuated along with the

wavelength shifts during exposure.

Complete spectral data for the 4026 filter/cell combination, including
mid-exposure results is contained in Appendix A as Figures 36, 37, and 38.

The third filter/cell combination investigated involves a blue-red filter
over 2 ohm-cm solar cells. Refleciance changes in this combination are summarized
in Figure 13. Besides initial sonple~to-sample v::riotiom in the infrared, the
principal result displayed ir. rFigure 13 is that combined proton/UV domcge is less
than either proton demage or ultraviolet damage considered alone. This is true

both for the UV rejection filter and at longer v.avelengths surrounding the red peak.
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Figure 13. In Situ Effects of Protors and Ultraviolet Radiation
on Blue-Red Filter/2 ohm-cm Cell Stack

Complete spectral data for the hlue-red filter on 2 ohm-cm cells, including mid-
exposure results, is shown in Figures 48, 49, and 50 of Appendix A. Spectral
transmittance curves of the blue-red filter alone show losses at wavelengths sur-
rounding the red peak. Complete spectral transmittance data including mid-
exposure results, is shown in Figures 54, 55, and 56 of Appendix A.

Adhesives and Quartz

Included in this program was an evaluation of solar cell adhesives. Re-
flectance changes in quartz/RTV-602/polished aluminum samples are summarized
in Figure 14. The appreciable differences from sample o sample, evidently in
thickness of RTV-402 "cement" used to prepare each sample, os indicated by
infrared absorption properties, should be noted. The samples exposed to ultraviolet
radiation for 2400 hours in accordance with Figure 1 degraded severely. After the
2400-hour test their visual appearance was a deep tan. Complete spectral results,
including mid-exposure data, are shown in Appendix A, Figures 60, 61, and 62.
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Figure 14. In Situ Effects of Protors and Ultraviolet Rodiation
on Clear Glas (Fused Silica)/RTV-602/Polished Aluminum

Similar pre-irradiation variations and posi-irradiation reflectance changes
are summarized in Figure 15 for quartz/XR6-3489/polished aluminum samples. Com-
plete spectral results, including mid-exposure data, are presented in Apoendix A,
Figures 63, 64, and 65. Both XRé and RTV adhesives exposed under quartz (7940
fused silica) received much higher ultraviolet ESH exposure, of course, than would
have been the case for adhesives under quartz with a UV rejection coating. Some
of the degradation is, in fact, in the "unscreened" quartz, as verified by trans-
mittance losses in uncoated quartz substrates exposed to protors and ultraviolet
radiation, separately and simultaneou;ly (Figure 16). Complete spectral results for
quartz, including mid-exposure data, are presented in Figures 66 through 74 in
Appendix A.
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Kapton Film

Kapten film was also evaluated during the 2400-hour test for application as
a "thermal shield" or the Venus-Mercury spacecraft. Preliminary design calls for
the film to stand off, away from the spacecraft; hence, there would be no conducied
heat to u substrate or spacecraft skin underneath (except along periodic support
mechanisms). To simulate this, Kapton samplies were mounted in the CRETC without
being bonded to their substrates; on two sides of the 2 cm by 2 cm samples, the
film was wrapped underneath the substrates. In the middle of a sample, the film
was separated from its substrate by at least several mils, and in places perhaps 50
mils. The sample exposed to protons ard ultraviolet radiation simultaneously (up to
10 suns by the end of the test) rose to an equilibrium temperature high enough to
alter its chemical structure fundamentally, verified by a dark brown appearance
after the exposure and by a corresponding reflectance curve (Figure 17). The
sample exposed to protens alone remained relatively close o the vemperature

profile shown in Figure 2.
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Figure 17. in Sity Effects of Protons and Ultraviolet Radiation on Gold-Backed Kapton Film
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The amount of 3-keV proton damage indicated in Figure 17 is consistent
with results obtained with Kapton during an earlier program using 40-keV protons
(Reference 5). Complete spectral data, including mid-exposure results, are shown

in Figures 75 and 76 of Appendix A.
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ANALYSIS AND DISCUSSION

As indicated in the previous section, presentation of complete spectral
results, the highlights of which have been summarized in Figures 10 through 17, is
reserved for the Appendices to this report, due to the large number of spectral plots.
Table 3 summarizes the combination of material type, thermophysical properties
derived, and kind of exposure that corresponds to each figure number to be found in

Appendix A, the location of complete spectral data plots from the 2400-hour test.

Thermophysical Properties

Thermophysical properties derived from computer-processed spectral data
are also gathered in Tables 4 and 5, for opaque and non-opaque materials.

respectively. The equations derining the thermophysical quantities of interest are

firma
Solar reflectance, Rs =2
Ji o ax
and
fi 0 10 4x
Solar transmittance, T = &
g RO

where ls’X) is the solar irradiance as a function of wavelength A, and R(A) and T(A)
are sample reflectance and transmittance functions (respectively), generally varying
with A. For transmissive (non-opaque) samples, solar absorptance is, by definition,

unity minus the sum of R and T, namely
=1-(R +
o 1-0+ 1)
Of course, for opaque somples this reduces to

ca=1-R .
s s

The integral ﬁs (A) d\ is an expression of the solar "constant". With com-
puterized data processing available, it is appropriate to replace the other integral

evaluations with numerical summations, so that
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Table 3. Figure Number in Appendix A for Each Material Investigated
in 2400-hour Test, Thermophysical Property Derived, and Type
of Exposure Received

Figure Number in Appendix A

Type of

. Solar Reflectance | Solar Transmittance | Solar Absorptance
Material

UV UV/p+ pt| UV W+ pr]| UV UV/p+ pt

Blue filter on
2Q -cm cell - o o - o o 24 25 26
Blue filter alone 27 28 29| 30 31 32 33 34 35
4026 filter on cell -- -- -] -  -- -- 36 37 38
4026 filter alone 39 40 41 42 43 44 45 46 47
Blue=red filter
on 2f~cm cell - - I I o 48 49 30
Blue-red filter 51 52 53| 54 55 56 57 58 59
alone
Clear glass (quartz)/
RTV-602 adhesive/ - -- -] e e- -- 60 61 62
polished aluminum
Ciear glass(quartz)/
XR6-3489 adhesive/ | -- - ] - - -- 63 64 65
polished aluminum
7940 fused silica |
(clear glass) 66 67 681 6% 70 71 72 73 74
Kapton film -- -- -~ -~ -~ .- .- 75 76

mn
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Table 4. Solar Absorptance of Opoque Samples Under Various Exposure Conditions

Kind Sample Before After Exposure for a Duration of
of Type and Exposure
Exposure Number 222hns | 753 hrs | 1573 hrs | 2400 hrs
2 Blue Filter 0.78 0.79 | 0.79 0.78 0.79
.g on cell, 2083
S .| 4026 Filter 0.31 [ 0.34 | 036 | 041 | 0.44
P 2 on cell, 2084
w O
2739 Blue Red Filter 0.70 0.71 0.71 0.70 0.70
§-°‘ on cell, 2085
I.U L
23 | Quertz/RTv/ | 0.22 | 0.2 | 0.29 0.36 | 0.46
§ E Aluminum, 2090
23 Quartz/XR6/ 0.2 | 0.2 | 0.28 0.34 | 0.47
2
E® Aluminum, 2091
o
"’ Kapton Film 0.35 | 0.37 | 0.40 0.67 | 0.78
Blue Filter 0.79 0.79 0.79 0.80 0.80
on cell, 2074
< 4025 Filter 0.31 0. 34 0.34 0.35 0.37
5 on cell, 2075 .
23 BlueRedFilter | 0.70 | 0.70 | 0.70 0.70 | 0.70
5 ‘i; on cell, 2076
Sg Quartz/RTV/ 0.25 0.32 0.36 0.46 0.54
“o Aluminum, 2081
5 Quartz/XR6/ 0.22 0.27 0.28 0.33 0. 48
Aluminum, 2082
Blue Filter 0.77 0.78 0.78 0.77 0.79
on cell,
4026 Filter 0.30 0.32 0.32 0.32 0.34
on cell, 2093
§ BlueRedFilter | 070 | 0.70 | 0.70 | 0.70 | 0.70
n_e on cell, 2094
2 Quartz/RTV/ 0.22 0.2 0.23 0.23 0.25
g Aluminum, 2099
§ Quartz/XR6 0.21 |02 | 023 0.24 | 0.2
Aluminum, 2100 ,
Kapton Film 0.34 0.35 0.36 0.38 0. 40
35

A
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Compariser of Fiiter—ort, ana Filsgr—on-Cell Resuds

One of the more corsistent cbservations of JON from this daogrnwe s P
damoge to the reflectc ce property of filters over cells is grwater than Earage N
the reflectonce :f filters alone. Meodified 4026 filter specital doka at JoU my, ke
example, displuyed in Appendix A in figures listed in Table 3, is techiced R vhange-
in—reflectonce values and presented in Figure 18, Values of AR 1w negative since
pre-irradiation reflectance at 360 my is greater than reflectarce after vaticus ex-
posure times (horizontal axis). In agreement with the summary plot bresented
eariier (Figure 12), reflectance changes ofter comdined proton/u traviolet exposwe
are greater than those after ultraviole'-only exposure and thase are greater than
measured reflectance charges cfter proton=only exposure. But considering wach
type of expasure by itself, measured damage is rearly always greater in the filter-
over-cell cample than in the filter-only sample. In both types of sanples there are,
presumably, contributiors to sample reflectance from front and back aurfaces of the
filter, and any absorpticn induced in bulk in the quartz substrate can contribute,
but again, presumably in both sample cases (filter over cell, and filter alone).
[Results presented enr'ier for 780 qua.:z do indicate lom of tranamimion (Figure 16)
and increased of i’: - Figures 72 through 74 in Appendix A for 7940 fused slllca
ofter evposure),] The only other physical differences between fiiter/cel! samples
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Figure 18. Degradation of UV Rejection in 4026 Filter at 360 my.

38




.t ¥ :

R 2 S

and filter-only samples, of course, are the highly absorbing cell underneath and
the adhesive between filter and cell. Both adhesives evaluated do degrade heavily,
at least by "worst case", “accelerated" exposure with low=loss quartz instead of a

partially reflecting filter on top.

Ar. analysis of the same kind using ba_ values instead of AR values would
show similar effects — that o, domage is greater in 4026 filter/cell combinations
than in 4026 filters alone; and that simultaneous proton/ultraviolet damage is
greater than ultraviolet or proton damage, and, in fact, ever greater than their

sum,

Relative changes similar to thcse presented in Figure 18, but lesser in
extent, exist at waveliengths out to about 0.6 micron o~ the 4025 filter. At longer
wavelengths, near 0.8 microns and 1. 2 microns, reflectance changes after exposure
are measured, but are too small and inconsistent in 4026 filter samples to present

in this kind of plot.

Such is not the case with blue filter samples, though. At 580 my the blue
filter, whether alone or bonded to a cell, initially has a low reflectance that rises
with exposure. This is shown in Figure 19 for 6 blue filter samples, 3 over cells
and 3 alone. Both protons and ultraviolet radiation are capable of reducing the
effectiveness of the antireflection coating on the front surface of the blue filter
‘and blue-red filter). Absolute changes are smaller than in Figure 18 (note ex-
panded scale on the vertical axis), but the duta consistently shows that reflectance
changes (increases) in blue filters over cells are grearer than reflectance increases

in blue filters alone.

In Figure 20 reflectance degradation at 360 mp is likewise more ‘extensive
in blue filters over cells than in blue filters alone. In filters over cells, Figures 19
and 20 show combined proton-ultraviolet damage to be greater, generally, than
damage from ultraviolet radiation only, as anticipated. However, in somples of
ti.c blue filter alone, both figures (19 and 20) indicate greater changes from
ultraviolet-only exposure than from simultaneous proton-uliraviclet exposure. This

is consistent with measured transmittance results for blue filters alone; Figure 1}
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Figure 19. Increase in Reflectance of Blue Filter in Situ at 580 mp

Figure 20. Degradation of UV Rejection in Blue Filter ot 360 mp
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incicctes that vltravioler—orly exposure -ascits i~ greater tronsmittance losses i~

the tlue filter than coes exposure to orotors ane ultraviolet radiction simuitcneswsiv.

A similar anclysis of datc shows less corsistent rasvirs for the blue—rea filter
thcn for either of the oreceding twe filters. At 380 mu (near the red peck) degroda-
tion due to increased reflectance is genercliyv more extensive in blue-red filters
over cells, than in blue-red filters clone (Figure 213, Corsistent with Figure 13,
changes after proton-ultraviolet expasure ore less than either ultraviolet or proton-
induced changes by themselves. In Figure 22 for data at 360 mg, filter-only damage
is sometimes heavier than, sometimes less than, damage in blue-red filters over cells,

depending on type of radiation axposure and length of exposure.

Temperature Effects

The importance of adequate and accurate temperature control of samples has
been shown by this program to be of great significance. Mention has already been
made of the results observed in Kapton film from the intentional lack of thermal
contact betwaen samples and substrates during exposure (results summarized in
Figure 17).

Beyond this "failure" of Kapton film are lesser, non-catastrophic effects
measured in other materials. The fact that filters having UV rejection coatings
continue to degrade throughout exposure — whether early in the 2400-hour period
with the adjacent samole-holding block maintained ot relatively low temperatures,
or whether later in the 2400-hour test ot higher temperatures — has already been
discussed. On the other hand, those filters having infrared rejection or "stopband"

coatings (blue-red and 4026\ sustuin degradation to those coatings at low tempera-~
tures and exposure values, but recover at higher exposure values when substrate
temperature rises sufficiently high. Examples are found in Appendix A, such as
Figure 51 for the blue-red filter, Figure 49 for the blue-r=d filter on a cell, anc
Figure 3" for the 4026 filter bonded to a cell.

Prior to conducting the 2400-hour simulation of the entire Venue- Mercury
flyby mission, a 500-hour test was conducted simulating the constant-temperaturs,
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Figure 21. Increase in Reflectance of Blue-Red Filter in Situ at 580 mp.

Figure 22. Degradation of UV Rejection in Blue-Red Filter at 360 mp
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constant-exposure-rate portion of the 2400-hour test (note Figures 1 and 2). Many
of the same materials were investigated in this preliminary test. Table 1 lists
definitively the samples exposed. Sample substrate temperature was maintained at
140°C throughout the exposure and measurement periods. Exposure levels at the
end oi 500 hours of 5 sun rate, 5 solar wind rate testing were 2500 equivalent sun
hours (ESH) of ultruviolet radiation, and 2.2 x 105 profons/cm2 {3-keV). Thus
these maximum exposure values from the 500-hour test are some 50 percent greater
in amount than exposure levels on samples in the 24C0-hour test at measurement
point 3 (see Figures 1 and 2). Most samples in the 2400-hour test sustained appre-
ciable degradation at measurement point 3 (753 hours, temperature still relatively
low) and underwent substantia! additional changes after measurement point 3, as
temperature and exposure rates increased. In contrast, however, somple property
changes in the 500-hour test were in nearly all cases very small. Except for one
anomaly discussed later at the beginning of Appendix B, even the largest 500-hour
test changes with exposure were less *.an changes at 222 hours (measurement point
2) in the 2400-~hour test. 1t appears, then, that high temperature radiation exposure
alore is insufficient to simulate degradation anticipated in solar panel materials

during a Venus=Mercury-type flyby.

Table 6 lists the figure numbers in Appendix B that >resent spectral results ¢
for the several materials investigated during the 500-hour test. The small thermo-
physical property vaiue changes derived from small spectral changes are gathered as
Table 7 at the beginning of Appendix B.

Another effect related to sample temperature has been observed in modified
4026 filters. Striations running nearly the length of the filter, and shorter, localized
"gouge-like" defects develop in the dielectric coating layers of 4026 filters (whether
alone or in cell stacks) os a result of the sample being elevated to temperatures ap-
proximately +140°C. These defects ore observed whether or not radiation exposure
follows the temperature exeursion. At thc beginning of this program, for instance,
spare samples were pumped down in the CRETC vacuum chamber, and their tempera-
tures raised to +140°C by the method depicted in Figure 6 for the purpose of

checking out sample transmittance measurement procedures. Camples were "at
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Toble 6. Figure Number in Apperdix B for Each Material Investigated
in 500-hour Test, Thermophysical Property Plotted, and Type
of Exposure Received

Figure Number in Appendix B

Type of Reflectance Transmittance Absorptance
Material

UV UV/pt p+t | UV UV/p+ p+| UV W/t pi
Blue filter on 77 78 79 | -- . — | 77 78 79
2 Q-cm cell
Blue filter alone 80 81 82 | 83 84 85 | 86 87 88
4026 filter on cell 89 90 91 -- -~ -- 89 90 91
4026 filter alone 92 93 94 95 96 97 | 98 99 100
Blue-red filteron 1151 402 703 |-- - - J101 102 103
2 Q-cm cell
Blue-red filter/ 104 905 jog |-  -=  -- fl4 105 106
adhesive/alurinum

temperature" approximately 4 hours. When returned to room temperature and brought
back into air, both the short and long striation defects were apparent. They were
similarly evident, and on some samples were more abundant, after the longer 500-
hour and 2400-hour tests (which of course included radiation exposure). Figure 23 L
is an oblique view of JPL samples 2075 and 2078 in air following exposure to ultra- ?
violet radiation during the 2400-hour test. The larger sample, a 4026 filter over a
2 x 2 cm cell, shows the long siriations primarily, whereas in the 1 x 1 em filter
(sample 2078) the shorter defects predomincte. Tables 5 and 7 indicate that solar

transmittance (‘rs', is unaffected by the inducement of these defects in 4026 filturs.

Figure 23. Defects in Multilayer Dielectric Coating
of Modified 4026 Filter After 2400~Hour Test
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CONCLUSIONS

1. Adequate temperature simulation in combination with sin‘ultaneous
exposure to solar wind protons and ultraviolet radiation is the minimum necessary to
allow an accurate prediction of effects of a Venus-Mercury flyby on solar panel and
other spacecraft materials. In particular, a simuiation of a Venus=Mercury flyby
employing constant radiation exposure rates and ' ~onstant maximum temperature
anticipated is a poor simulation, falsely predicting nly small amounts of degrada-

tion when in fact heavy damage occurs.

2. Solar ultraviole:t radiation dominates solar wind protons as the major
damage source in solar panel and spacecraft materials investigated in this program,
Yet because of apparent synergistic effects from these two types of radiation, they
must be used in simultaneous combination to result in an accurate prediction of

space radiation “fects.

3. In general, thermophysical property value changes in transmissive solar
cell filters after radiotion exposure are quantitatively less thon changes measured on

solar cell-filter stacks.

4. The 4026 filter is presumably the orly viable choice for use on a solar -
panel remaining substantially perpendicular to the sun's direction throughout a
Venus-Mercury flyby if temperatures below +140°C are to be maintained. Though
its solar absorptance increases due to exposure to protons and ultraviolet radiation, !

the 4026 filter appears to be suitable for use on a normal solar panel. ¢

5. The blue filter and blue-red filter are suitable candidates for use on a
Venus-Mercury tiltable solar panel. The blue-red filter appears to be slightly
more resistant than the blue filter to increase in solar absorptance due to radiation

exposure,
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APPENDIX

This appendix consists of computer=processed spectral plofs of refiectance,
trarsmittance, and/or absorptance of samples exposed to protons and/or ultraviolet
radiation during the 2400-hour test simulating the 1973 Venus-Mercury spc_ecraft
mission. Derived thermophysical properties that apply are also shown on each
spectral plot.
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APPENDIX B

Introduction

This appendix presents spectral results obtained in situ on 18 samples exposed
to protons and ultraviolet radiation during a preliminary 500-hour test early in this
program. FEach spectral plot consists of reflectance, transmittance, and/or absorp-
tance curves as a function of wavelength between 0.28 and 2.5 microns, each
curve being numerically labelled to agree with certain exposure levels. |n parti-
cular,

for those six samples exposed to ultraviolet radiation:

CURVE MEASUREMENT CONDITIONS

Preirradiation; samples at +140°C

After 260 ESH (53 hours); + 140°C
After 700 ESH (140 hours); + 140°C
After 1600 ESH (316 1/2 hours) + 140°C
After 2500 ESH {500 hours) + 140°C

LdhwnNnn —

for those six samples exposed simultaneously to 3-keV protons and
ultraviolet radiation:

CURVE MEASUREMENT CONDITIONS
0 Preirradiation; samples at room temperature
] Preirradiation; samples at +140°C
2 After 260 ESH and 2.3 x 1014 protons/cmZ; + 140°C
3 After 700 ESH and 6.0 x 1014 protons/cm?2; + 140°C
4 After 1600 ESH and 1. 4 x 1012 protons/cm?; + 140°C
5 After 2500 ESH and 2. 2 x 1015 protons/cm?; + 140°C

for those six samples exposaed to 3-keV protons:

CURVE MEASUREMENT CONDITIONS
1 Preirradiation; samples at +140°C
2 After 2.3 x 1014 pro*ons/cm2; +140°C
3 After 6.0 x 1014 protons/cm2; +140°C
4 After 1.4 x 1015 protons/cm2; +140°C
5 After 2.2 x 1013 protons/cm2; +140°C

The spectral transmittance plot for the blue filter with sample number 2038
(Figure 83) represents anomalous data, In this figure, it is seen that spectral trars-
mittance increases with exposure. Following the 500-hour test, a microscopic
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examination revealed small particle defects on one side of sample 2038. The
curves in Figure 86 are also affected by the defects in this sample.

Solar absorptance and solar transmittance values for the 18 samples, before
and after exposure, are given in Table 7. The 6 samples exposed simultaneously to
protons and ultraviolet radiation were measured both at room temperature and at
+140°C before irradiation. Pre-exposure thermophysical property values before
exposure were identical at the two temperatures, except as indicated by footnotes.

Table 7. Solar Absorptance and Solar Transmittance Values of

Samples Exposed in Preliminary 500-Hour Test and

Measured at Temperature of +140°C

Kind Sample % Value [Voalue After Exposure for Duration of
ot Type and g Before —
Exposure Number S |Exposure | 53 hrs | 140 hrs 1316 hrs [ 500 hrs
Blue Filter a
on Cell, 2041 S 0.78 0.79 0.79 0.79 0.79
2 Blue Filter % | 0.02° [0.03 | 0.02 |0.03 | 0.03
0
5 |olme 24 x| 08s° |0.84 | 0.85 [0.84 [ 084
[~ WP
05
35 4026 Filter
2 k: onCell, 2042 | % | ©0-30 |0.31 | 0.31 J0.30 | 0.3
8% ‘ .
X9 % | 0.05 |0.05 | 0.05 | 0.06 | 0.06
" 'c->, 4026 Filter ’ ’ ) ) )
3 =
85 alone, 2045 T | 0.29°[0.30 | 0.30 |0.29 | 0.29
£ BI d Filt
2 © ve-red Filter
Z/Es on Cell, 2046 | % 0.69 | 0.68 | 0.68 | 0.68 | .68
Blue-red Filter/ d
Adhesive, 2043 % | 0.200 [ 0.21 0.2% 0.22 | 0.22
EO. 01 at room temperature
c:0. 86 at room temperature
a2 30 at room temperature
0. 21 ot room temperature
101
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Table 7. Solar Absorptance and Solar Transmittance Values of

Samples Exposed in Preliminary 500-Hour Test and
Measured at Temperature of +140°C (continued)

Kind Sample 8| Value |Value After Exposure for Duration of
of Type and g Before
Exposure Number 5 |Exposure |53 hrs | 140 hrs | 316 hrs {500 hrs
Blue Filter
) onCell, 2035 | | 0-78 |0.79 | 0.79 | 0.79 | 0.79
(o]
- a
3 Blve Filter s| 0.08 |0.07 | 0.05 |0.04 |o0.03
=]
s alore, 2038 T | 078 |0.80 | 0.82 |o0.83 |o0.84
0 4026 Filter
> on Cell, 2036 | | 0-30 [0.30 [ 0.30 1030 f0.30
5 4026 Filt > %] 0.05 |0.05 | 0,05 | 0.06 | 0.06
i) alone, 2039 T
bt s| 0.29 10.29 [ 0.30 [0.29 |0.29
3 Blue-red Filter
g on Coll 2040 | | 0-69 |0.69 | 0.68 |0.69 |0.68
”" Blue-red Filter/
Adhesive, 2037 | | 020 |0.21 ] 021 |0.22 0.2
Blue Filter a
on Cell, 2047 s 0.78 |o0.78 | 0.78 |[o0.78 [ 0.78
Blue Filter %] 0.03 |0.03 | 0.02 |003 |[0.03
g |olone 2050 | %] o84 fo.84 |o0.85 [0.88 |0.83
% 4026 Filter
“:; onCell, 2043 | | 029 [0.29 030 [o0.29 |0.30
:.; 4026 Filter %| 0.05 |0.05 | 0.05 [0.06 |0.05
g |oclone, 2050 | o1 559 {030 | 030 [0.29 |0.29
& Blue-red Filter | q
on Cell. 2052 s| 0.69 |0.69 | 0.69 |0.69 [0.68
Blue-red Filter/ -
Adhesive, 2040 | | 021 [0.20 fo0.20 Jo.21 fo.2
102
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